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Abstract

The attention structure is essential for the success of large language models nowadays. Many works
are devoted to a better understanding of attention. In this report, we focus on the implicit bias of the
scaling factor in attention. Specifically, we analyze the influence of scaling on the distance of training
dynamics bewteen two parameterizations, KQ-param and W-param, and search for the scaling scheme
that will lead to a ”correct” linearization for KQ-param, through the ideas and tools from lazy training.

1 Introduction

Transformers have demonstrated superior success in influential applications, especially in the area of large
language models[Bro+20; Ope+23; Tou+23]. A fundamental theoretical understanding of the implicit bias
of the transformer can better facilitate the utilization and design of different transformer structures. In this
report, we will study the simplified attention model as [Tar+23]. Given input sequences X,Z ∈ RT×d with
length T and embedding dimension d, the cross attention model is formulated as

fcross(X,Z) := V TXTS(τXKQTZT ) (1)

where K,Q ∈ Rd×m, V ∈ Rd×v, τ is the scaling factor in softmax, which is originally chosen as
1√
m

in

[Vas+17]. And S(·) denotes the softmax nonlinearity, which is applied column-wise.

To focus on attention mechanism, [Tar+23] assumes (1) z ∈ Rd; (2) feed-forward network is linear and fixed;
(3) V fixed. Thus, we can define the single-layer transformer

fK,Q,τ (X, z) = h(XTS(τXKQT z)) = vTXTS(τXKQT z) (2)

where h : Rd → R is a fixed linear function that can be written as h(·) = ⟨v, ·⟩ with v ∈ Rd. If z is a
token in sequence X, then f could also represent the self-attention layer. The author also propose another
parameterization to better understand the implicit bias of this simple model,

fW,τ (X, z) = h(XTS(τXWz)) = vTXTS(τXWz) (3)

Consider a classification task with dataset (Yi, Xi, zi)
n
i=1 where Yi ∈ {+1,−1}, the goal is to compare ERM

problem using two different parameterization under the separable setting:

L(W ) =
1

n

n∑
i=1

l(fW,τ (X, z), Yi) (W-ERM)

L(K,Q) =
1

n

n∑
i=1

l(fK,Q,τ (X, z), Yi) (KQ-ERM)

where l(·, ·) is logistic loss function. The author shows that W-ERM and KQ-ERM correspond to two different
SVM problems through Regular Path Analysis. In our project, we focus on the relationship between training
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dynamics of different parameterizations under different scale factors τ = 1√
m

or τ = 1
m when m → ∞.

Specifically, we focus on the following two problems,

• Will the distance between training dynamics of W-ERM and KQ-ERM converge when m → ∞? With
which scaling scheme, this convergence might occur?

• Which scaling scheme will lead to convergence of training dynamics between KQ-parameterization and
its linearization? What is the induced NTK, and what is the implicit bias of the linearized model?

2 Literature Review

2.1 Implicit Bias of Transformer

Over-Smoothing. In transformer (or GNN), each layer repeatedly aggregates information from neigh-
borhoods. As the model goes deeper, token (node) representations tend to converge and become indis-
tinguishable, which can cause low-rank issues for the output hidden states. [DCL21] shows that without
skip-connection or MLP, the output hidden states of the last layer of the transformer would be a rank-1 ma-
trix. The output hidden states of multi-head transformer can be decomposed into a sum of single-attention
paths. Each path would lead to its output (of the path) converging to a rank-1 matrix double exponentially.
[Ges+23] analyzes the influence of depth from the perspective of Neural ODE, showing that even with skip-
connection, the low-rank issue still occurs. For the Neural ODE model, we can have a probabilistic measure
for tokens (or hidden states) of each ”layer t” now.

Norm Growth and Saturation (Training) The saturation phenomenon means that the softmax would
tend to be a one-hot vector or a vector (whose sum is 1) concentrated on several tokens during training,
which can be viewed as an implicit bias of GD with transformer. During pertaining of T5 model, there is
indeed the growth of weights norm and directional convergence trend of weights as exhibited in Fig 1, which
coincides with the ”separation theory” in [Tar+23]. Also, most heads exhibit saturation property in experi-
ments [Mer+21]. Interestingly, the depth also exhibits a similar impact on softmax output. From Theorem
2.1 in [Ges+23], when depth goes large, self-attention matrix after softmax converges to a low-rank Boolean
matrix.

Figure 1: The norm growth phenomenon in T5 Training [Mer+21]

2.2 SVM Equivalence for One-Layer Attention

[Tar+23] establishes the equivalence between two ERM problems and the following two SVM formulations
through Regular Path Analysis. Though τ = 1 is used in [Tar+23], however, the scaling doesn’t influence

2



the equivalence in Section 2.2.1.

2.2.1 ”Global” SVM Formulations

Given a prediction head v ∈ Rd the score of a token xit of input Xi is defined as

γit = Yiv
Txit,∀i ∈ [n], t ∈ [T ]

and opti = argmaxt∈[T ]γit,∀i ∈ [n]1

Definition 1 (SVM for W-ERM).

Wmm = argmin||W ||F s.t. (xiopti − xit)
TWzi ≥ 1,∀t ̸= opti, i ∈ [n] (Att-SVM)

The intuition is, let Pi = S(XiWzi) ∈ RT ,

L(W ) =
1

n

n∑
i=1

l(γitPit) ≥
1

n

n∑
i=1

l(γiopti)

if minimizing the training loss involves choosing the optimal token xiopti , the softmax similarities should
eventually converge to a one-hot vector, which corresponds to the norm growth phenomenon in [Mer+21]

Definition 2 (SVM for KQ-ERM).

Wmm
∗ ∈ argmin

rank(W )≤m

||W ||∗ s.t. (xiopti − xit)
TWzi ≥ 1,∀t ̸= opti, i ∈ [n] (Att-SVM∗)

where ∥ · ∥∗ denotes nuclear norm and when m > d, the constraint can be removed, which is always the case
[Tar+23] considers.

Theorem 1 (Equivalence through RP Analysis, Informal). Given R > 0, find,

W̄R = argmin
||W ||F≤R

L(W ) (W-RP)

(K̄R, Q̄R) = argmin
∥K∥2

F+∥Q∥2
F≤2R

L(K,Q) (KQ-RP)

We have,

lim
R→∞

W̄R

R
=

Wmm

||Wmm||F
, lim
R→∞

dist(
K̄RQ̄R

R
,

Wmm
∗

∥Wmm
∗ ∥∗

) = 0 (4)

This theorem indicates the equivalence between the ERM problem and the SVM problems.

2.2.2 Local Convergence for W-ERM

Definition 3 (”Locally Optimal” SVM for W-ERM). Fix token indices α = (αi)
n
i=1. Solve (Att-SVM) with

(opti)
n
i=1 replaced by (αi)

n
i=1

Wmm
α = argmin||W ||F s.t. (xiαi

− xit)
TWzi ≥ 1,∀t ̸= αi, i ∈ [n] (Att-SVM-α)

If (Att-SVM-α) admits a solution, then consider the set Ti ⊆ [T ] such that (xiαi
− xit)

TWmm
α zi = 1 for all

t ∈ Ti. We refer to (Ti) as support vectors of α. If

γiαi > γit,∀i ∈ [n], t ∈ Ti

indices α = (αi)
n
i=1 are called locally-optimal and Wmm

α is called a locally-optimal direction.
1More precisely, it should be opti ∈ argmaxt ∈ [T ]γit.
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Theorem 2 (Local Convergence, Informal). Under some conditions, GD with suitable step size η will
converge to a specific locally-optimal solution,

lim
k

||W (k)||F = ∞, lim
k→∞

W (k)

||W (k)||F
=

Wmm
α

||Wmm
α ||F

(5)

where W (k) follows gradient descent, W (k + 1) = W (k)− η∇L(W (k)).

In our report, we focus on the relationship of KQ-parameterization (KQ-param) with other parameterizations
like W-parameterization (W-param) and the linearization of KQ-param under different scalings. The implicit
bias of KQ-param is already established similar to Formula 4 and there is also the similarly defined locally
optimal solution in Att-SVM∗ of KQ-param, Wmm

α,∗ , as Wmm
α in W-param.

3 A Revisit of Lazy Framework on Two-Layer NN

As we concentrate the relationship between KQ-param and W-param under different scalings and we search
for a valid scaling that leads to the ”correct” linearization model for the infinite-width attention layer with
KQ-param, we have a brief review of [COB20] here, which is a useful ”framework” to analyze problems of
this prototype.

3.1 Lazy Training Framework

We consider a parameterized predictor θ ∈ Rp → fθ ∈ F , where fθ : Rd → R. Assume we have n
data samples x1, ..., xn ∈ Rd and a smooth objective function R : Rn → R. This leads to the following
parameterized objective2 F : Rp → R: F (θ) = R(fθ). Let us define a rescaled parameterization,

Fα(θ) =
1

α2
R(αfθ) (6)

and its linearization model at initialization,

F̄α(θ̄) =
1

α2
R(αf̄θ) (7)

where the linearization is, f̄θ = fθ0 +Df(θ0)(θ̄ − θ0).

One thing to note, the scale factor in Formula 6, 7 is to ”synchronize time scale” for different α, which
means if we apply GD on Fα(θ), the loss difference is asymptotically the same for large α after each step.
Then we give a theorem from [COB20] about the difference between two gradient flows.

Theorem 3. Given a fixed time horizon T > 0 and fθ0 = 0,

supt∈[0,T ]∥αfθt − αf̄θ̄t∥ = O(1/α)

supt∈[0,T ]∥θt − θ̄t∥ = O(1/α2)

This theorem means that the increase of α will make the model behave like its linearization at initialization.

Experiments. We start a small one-step/few-step GD experiment to show this convergence rate in the
distance between two predictor spaces and also we will show the importance of condition fθ0 = 0. The

2We might sometimes simply regard fθ ∈ Rn as the outputs for n data samples
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reason we do this experiment is to help us better understand and design the one-step GD experiment on
infinite-width two-layer NN and infinite-width attention layer with different scale factors This is more like
a record of solving the problem of previous inconsistency between my experiment results and theory, which
might not be that related to the main concern of this project.. We define a 2-layer NN,

αfθ(x) = α

m∑
j=1

ϕ(wj , x) (8)

where wj = (aj , bj), aj ∈ R and bj ∈ Rd, ϕ(wj , x) = ajσ(b
T
j x). We can assume σ(·) can be a ReLU activa-

tion function (non-smooth), identity function, or sigmoid function and wj ∼ µ0 ∈ P(Rd+1). We consider a
dataset (xi, yi)n, where xi ∈ Rd, yi ∈ R. In our experiment, we set n = 5, d = 10, set R mean square loss, set
µ0 = N (0, Id+1) as our defualt setting and we would replace fθ by fθ − fθ0 to make sure zero initialization
if we don’t mention explicitly.

Experiement - fθ0 = 0 matters. In this experiment, we fix m = 20, and see the influence of α.

(a) (b)

Figure 2: One-step GD for two-layer NN with zero initialization. We set step size to ηα = η0
1

α2
with

η0 = 0.005 in our implementation. ∆(L) in (b) refers to the change of R(αfθ) (not Fα(θ)) after one-step GD.

(a) (b)

Figure 3: One-step GD for two-layer NN with non-zero initialization.
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We can see from Fig 2 that with zero initialization, ∥αfθ1 − αf̄θ̄1∥ ∼ O(1/α), which is consistent with
Theorem 3. However, if the initialized output is not zero, the Theorem 3 doesn’t hold anymore. This is useful
for our infinite-width experiment in Section 3.2 and Section 4. Although Ew∼µ0

[ϕ(w, x)] = 0, symmetric
initialization strategy from [COB20] indeed removes the randomness at initialization and helps to show a
more consistent result when m is not that large.

Experiment - ηα =
η1

∥∇R(αfθ)∥2
. This step size choice can approximately make the change of loss equal-

ing to η1 after each step for different parameterizations3, which is consistent with the experiment result
in Fig 4(b). And it is clear that after one-step GD, ∥αfθ1 − αf̄θ̄1∥ ∼ O(1/α). It is easy to prove that
∥∇R(αfθ0)∥ ∼ Θ(α), which is under our expectation. And that is why this step size will lead to similar

performance as ηα =
η0
α2

. If we want to observe the ∥θt − θ̄t∥, we can do a t-step GD with t > 1 as one-step

GD will lead to ∥θ1 − θ̄1∥ = 0. The results of multi-step GD are in Appendix A.1.

(a) (b)

Figure 4: One-Step GD for two-layer NN with zero initialization with ηα =
η1

∥∇R(αfθ)∥2
, where η1 = 0.005

is the ∆(L)per step in the figure.

Take away from the experiments. Zero initialization matters, and we will use step size of ηα =
η1

∥∇R(αfθ)∥2
in the remaining part of the report. The reason why we use this step size is explained in

Appendix A.2. Then we want to use this lazy training framework to analyze our attention layer in the
following.

3.2 Lazy Training Analysis on Infinite Two-Layer NN

Before moving to the analysis of the infinite-width attention layer, we first revisit the infinite-width two-layer
NN first. As claimed in [COB20], we consider a two-layer NN with the following scheme,

fθm(x) =
1√
m

m∑
j=1

ϕ(wj , x) =
√
m

 1

m

m∑
j=1

ϕ(wj , x)


3This is a general result for any function [CN23]
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where

(
1

m

∑m
j=1 ϕ(wj , x)

)
→ Ew∼µ0

[ϕ(w, x)]. Asymptotically, Ew∼µ0
[ϕ(w, x)] is equivalent to the fθ in lazy

training framework, and fθm is equivalent to αfθ with α =
√
m. Therefore, we have the following corollary

on two-layer NN.

Corollary 1. Given a fixed time horizon T > 0,

supt∈[0,T ]∥fθm
t
− f̄θ̄m

t
∥ = O(1/

√
m)

supt∈[0,T ]∥θmt − θ̄mt ∥ = O(1/m)

Experiments. We use the symmetric initialization strategy from [COB20] to make sure that fθm
0

= 0 for
any m that is even.

(a) (b)

Figure 5: Few-Step GD for two-layer ReLU NN with symmetric initialization. The y-axis refers to log10∥fθm−
f̄θ̄m∥ for 1√

m
scaling and log10 value of the corresponding distance in predictor space under 1

m scaling. (a)

represents the 1-step GD experiment, in which ∥fθm
1
− f̄θ̄m

1
∥ ∼ O( 1√

m
) when m is large enough. (b) represents

a 5-step GD experiment, in which ∥fθm
5
− f̄θ̄m

5
∥ ∼ O( 1√

m
) is more clear.

Take away from this experiment. Sometimes multiple-step GD experiments show the result (the rate)
more clearly, as Fig 5 suggests. Also, we need multiple-step GD to observe ∥θt − θ̄t∥ as in Appendix A.1. 4

4 KQ-param and W-param of Attention Layer

Theoretically, the local convergence of GD on W-ERM is guaranteed under some ”strong” conditions; Em-
pirically, when d ≫ n, with high probability, the local convergence of W-param can be achieved showed in
[Tar+23]. In this section, we would like to see the distance between W-param and KQ-param during training,
to see which scaling scheme will lead to a converge phenomenon between the two training dynamicses.

4In addition, the symmetric initialization is important for the effect of the simulation from my experience.
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4.1 Few-Step GD

Since V of the original attention model as Formula 1 is not inclulded in the trainable parameters in our
model, the only trainable part is within the softmax S(·). Also, assume we have a fixed dataset (Yi, Xi, zi)n,
we simplify identify the ERM problem as

l(fK,Q,τ (X, z), Y ) = l(vTXTS(τXKQT z, Y ) = l̃(τXKQT z) (9)

in which a structure similar to two-layer NN with different scale factors occurs. With experience in lazy
training frameworks on two-layer NN, we will design a similar few-step GD experiment on the W-param and

KQ-param of the two models in this section. We will use the step size scheme with η =
η1

∥∇l(fK,Q,τ )∥2
and

η =
η1

∥∇l(fW,τ )∥2
to control the loss difference to be the same after each step for each parameterization,

which achieves the synchronization of ”time scale”. From Fig 6, we observe a clear convergence between two
different dynamics after ”fixed ∆t” under the scaling of τ = 1√

m
.

(a) (b)

(c) (d)

Figure 6: 5-Step GD for attention layer with zero initialization in softmax with ηα =
η1

∥∇θ0R(αfθ)∥2
.

4.2 Training Trajectory

Also, we do a simple experiment to see whether the increased m would lead to the same training dynamics
between W-param and KQ-param. According to [CB20], when there is a large initialization with an expo-
nential tail in a classification setting, the training dynamics will detour to the solution of the linearized model
first, demonstrating the characteristic of kernel regime which cannot be seen in small initialization.
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Figure 7: Training Trajectory with W-param and KQ-param under
1√
m

scaling. The y-axis corresponds

to the cosine similarity with Wmm
α , the optimal solution of (Att-SVM-α), where α is determined by the

directional convergent solution of training dynamics under W-param. In this experiment, (n, T, d) = (5, 6, 8).

Figure 8: Training Trajectory with W-param and KQ-param under
1

m
scaling. Although there is a detour

phenomenon, no clear phenomenon of ”approaching” to Wmm
α when m increases is observed.

In our experiment, we observe a clear detour phenomenon in the training of KQ-param to Wmm
α , and the

detour weight is ”approaching” Wmm
α when m → ∞, which is not demonstrated under 1

m scaling5 in Fig 8.

Conclusion. Empirical experiments suggest that under τ = 1√
m

scaling, there might be a convergence

of distance between the training trajectory of W-param and KQ-param. However, the analysis of the dis-
tance between these two parameterizations might be untractable. Thus we will turn to the distance between
KQ-param and its linearization model first, for which there are already some guarantees, and there are more
tools to analyze it.

5 KQ-Param and its Linearization

Linearization inside softmax. Similar as Formula 9, we still focus the KQ-param here and combine S(·)
into l̃, and thus we define

gK,Q,τ (X, z) = τXKQz (10)

with which we can define its linear model ḡK̄,Q̄,τ through first-order expansion. We implement a similar
experiment on KQ-param as infinite two-layer NN here.

5We already make sure that the dataset and v are fixed.
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Figure 9: 5-step GD for KQ-param in attention layer

We observe that, similar to two-layer NN, τ =
1

m
will lead to ∥gK,Q,τ − ḡK̄,Q̄,τ∥ ∼ Θ(1) within a fixed time

of training, while τ =
1√
m

will lead to ∥gK,Q,τ − ḡK̄,Q̄,τ∥ ∼ Θ(1/m)6. This suggests that τ =
1√
m

can lead

to a kernel regime.

Combined with softmax. As [Hro+20; Wu+23] shows, with τ =
1√
m
, each element of τKQT will

be a random variable with mean 0 and variance 1 at initialization. However, τ =
1√
m

will cause each ele-

ment τKQT convergent to 0 when m → ∞, which might force the softmax to be an average pooling layer.

However, [Hro+20; Wu+23] both state that with
1

m
, the attention structure can lead to a valid NTK, which

seems very controversial to the current understanding. However, it is probably because in the linearization
of [Hro+20; Wu+23] the softmax term is treated as a whole and it is not the output layer in their setting.
Considering the saturation property, the scaling inside softmax doesn’t bring a large initialization effect,
which will change the analysis.

Remained doubts. For this part, I have some doubts remained for future exploration,

• When can we apply the lazy training analysis? In the two-layer attention layer model, we can formulate
it in an expectation term (mean-field parameterization) multiplied by

√
m. Now assume we have another

Neural Network in the following formula and we still use
1√
m

scaling,

gθ(x) =

 gθ,1(x)
...

gθ,dout(x)

 , gθ,i(x) =
1√
m

m∑
j=1

Vi,jσ(Ujx) (11)

where V ∈ Rdout×m, Uj ∈ Rd, x ∈ Rd. Now, we can still write each element of gθ(·) as ”a scale
factor α times an expectation term”. However, gθ,i(·) is not independent with each other as they share

U =

UT
1
...

UT
m

. What is the influence of losing independence on lazy training analysis? (We care about

this because the independence is also missing in KQ-param.)

6It might seems inconsistent with O(
1

√
m

) as lazy training theory suggests, however, we have seen similar rate when we use

identity activation in two-layer NN as Fig 12 in Appendix A.3.
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• Why τ =
1

m
could lead to a valid NTK? The argument in [Hro+20] is based on NNGP and Gaussian

Conditioning, for which I will learn some computation techniques to better understand. Generally,
combining softmax and loss function might not be a good choice to analyze the attention layer as it is a
very special structure of attention. However, when we do the linearization inside the softmax, it makes

the infinite-width limit with τ =
1√
m

more meaningful, since τ =
1√
m

is what a practical transformer

uses. How do we choose between those two?

• Once we find the ”correct” linearization scheme, we can finally arrive at the problem we originally cared
about. What will be the implicit bias of the linearized model at the infinite-width limit?

6 Conclusion

In this project, we conduct a comprehensive analysis of lazy training within the explicit scale format and the
NTK parameterization of two-layer neural networks. This analysis is to ensure each block is experimentally
and theoretically ”correct”, which is crucial for subsequent investigations (the selection of step size and
symmetric initialization). We empirically investigate the impact of the scaling factor on the distance of
training dynamics between the KQ-param and W-param of the attention layer. Our findings suggest that a
scaling factor of 1√

m
may lead to convergence of the distance between these two parameterizations. However,

a more thorough examination is necessary for the implicit bias of linearization of KQ-param, which will be
a focus of future research.
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A More Results from Analysis of Lazy Training Framework

A.1 Multiple-Step GD Experiments for α-Scaling

(a) (b) (c)

Figure 10: 5-Step GD for two-layer NN with zero initialization with ηα =
η1

∥∇θ0R(αfθ)∥2
. We observe from

(c) that ∥θ1 − θ̄1∥ ∼ O( 1
α2 )

A.2 A More Careful Observation about the Step Size for Infinite-Width NN

For the α scaling case discussed in section 3.1, we can check easily that ∥∇θ0R(αfθ)∥ ∼ Θ(α), and that’s

why ηα =
η1

∥∇θ0R(αfθ)∥2
can lead to similar simulation effect as ηα =

η0
α2

. However when it comes to

infinite-width two-layer NN, things become a bit different. Assume fθm
0

= 07, consider for a fixed x8,

∥∇θm
0
R(fθm(x))∥2 =

∑
j

∥∇wj
fθm(x))∥2∥R′(0)∥2 (12)

=∥R′(0)∥2
∑
j

1

m
∥∇wj

ϕ(wj , x)∥2 (13)

∼ Θ(1) ̸= Θ(m) (14)

7In general, Ewj∼µ0 [ϕ(wj , ·)] = 0. However, our symmetric initialization in experiments can ensure zero output for any m.
8Here we could treat R : R → R
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(a) (b)

Figure 11: The scale of the norm of gradient under α-scaling and
1√
m
-scaling. (a) shows the ∥∇θ0R(αfθ)∥ ∼

Θ(α) for α-scaling in the original rescaled setting in [COB20], (b) shows the ∥∇θm
0
R(fθm(x))∥ ∼ Θ(1) for

1√
m
-scaling in infinite-width NN setting.

The step size of
η1

∥∇R∥2
suggests if we want to ”synchronize time scale” for 1√

m
-parameterization, we should

directly use a fixed step size η1 for any m instead of ηm =
η0
m

suggested by the rescaled model in Formula 6.

This ”inconsistency” is a bit tricky, probably stemming from the ”infinite-width” and we should be careful
about it. Also, if we change the NTK initialization (with an explicit 1√

m
) to Lecun initialization (aj ∼

N (0, 1/m)), we will obtain ∥∇θm
0
R(fθm(x))∥ ∼ Θ(

√
m), which is consistent with lazy training framework.

A.3 Two-Layer NN with Identity Activation

Figure 12: Few-Step GD for two-layer NN with Identity activation and symmetric initialization. The y-axis
refers to log10∥fθm − f̄θ̄m∥ for 1√

m
scaling and log10 value of the corresponding distance in predictor space

under 1
m scaling.
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